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Final Report
Research Under Grant AFOSR-88-0080
November 1, 1987 to January 31, 1990

1 Introduction

This report describes the work supported by the Air Force Office of Scientific Research under
Grant AFOSR-88-0080 from November 1, 1987 to January 31, 1990. The grant supported
the work of the Principal Investigator Professor Arye Nehorai and of his student David Starer
at Yale University.

The amount of work we have done and the number of subjects studied in one year
was far beyond what was promised in the original two year proposal [1]. The original
proposal focused on the development and analysis of single-sensor parameter estimation
schemes for ARMA signals in noise. In the single sensor problem, we solved several new
problcms for tnese signais and also added sine wave signals in noise. Furthermore, we
extended the research to multisensor (or sensor array) estimation algorithms which are useful
for localization of energy radiating sources. Examples are localization of sound sources such
as helicopters and electromagnetic sources such as radio transmissions. All of the proposed
algorithms have been tested by computer simulation to verify their operation.

A testimony to the significance and recognition of our recent research is that we were
invited to publish the article [11] as a chapter in a forthcoming book edited by S. Haykin
[1.]. The article [11] recently received the IEEE Signal Processing Society's Senior Award.

The research results obtained this year are described in detail in the references [21-[14].
The work in all of these articles was performcd with the support (either whote or partial)
of the AFOSR grant, and this financial support is acknowledged in the articles themselves.
The work is summarized in the following.

2 Single Sensor Algorithms

2.1 Algorithm Development

2.1.1 Adaptive Algorithms for Constrained ARMA Signals in the Presence of
Noise [2]

A convenient model for time-series analysis and system identification is the autoregressive
moving-average (ARMA) or rational transfer function model: In time-series analysis, a mea-
sured signal can be modeled as the output of a rational transfer function driven by white
noise. The estimated model can then be used to determine the signal spectrum. In system
identification, an unknown system can be modeled as a rational transfer function whose pa-
rameters can be estimated from measurements of the input and output signals using ARMA
identification algorithms. Knowledge of these parameters can be used, for example, by an
adaptive regulator to control the system.

Most existing ARMA estimators employ "unconstrained" rational models. However, in
many applications the measured signal is known to have special properties, and it is prefer-



able to constrain the model to conform to these properties. Furthermore, most existing
ARMA estimators ignore the contamination of the signal by noise, and this leads to incor-
rect estimates. To solve these problems, we developed in [21 a general family of ARMA
adaptive algorithms which utilize a priori known information concerning the signal's prop-
erties and solve the problems associated with nonlinearities which arise from the presence
of noise. These algorithms can track time-varying parameters, are more accurate and are
computationally more efficient than the unconstrained ARMA algorithms. Applications of
these algorithms include signal analysis in multipath scenarios, image deblurring, structured
signal (e.g. band-pass) spectrum analysis.

2.1.2 Adaptive Pole Estimation [3]

In many ARMA spectral estimation problems, the parameters of interest are the poles (or sin-
gularities) of the rational transfer function. These are useful, for example, for spectral peak
estimation, robust speech communication, and estimation of direction of arrivals (DOAs) of
enr$. ,,ves impinging on a sensor array. Thus there exists a need for an algorithm which
can satisfy the simultaneous requirements of a) directly providing estimates of a system's
poles and of b) providing new pole estimates as each data sample is received. Our research
in [3] has provided an algorithm which satisfies the above requirements. In this method, the
system is parametrized directly in terms of its poles. Convergence analysis is provided and it
is shown that the algorithm converges to the true parameters. The research has already pro-
vided some spinoff results in the form of new polynomial factorization algorithms described
below (see also [4]).

2.1.3 Polynomial Factorization Algorithms for Adaptive Root Estimation [4]

Polynomial factorization is often required by signal processing and system identification al-
gorithms. Examples include speech processing. frenuencv etimation of multiple complex
exponential signals in noise, and source localization using a uniform linear array of sen-
sors. Conventional polynomial factorization algorithms cannot be used to track the roots
associated with time-varying coefficients, i.e., if the coefficients change slightly, the entire
factorization procedure must be restarted.

Our research in [4] has produced a new efficient algorithm which overcomes the above
difficulties. It estimates all roots simultaneously so that deflation is not needed. This elimi-
nates the necessity for estimating individual roots to maximum accuracy at each iteration.
The method has guaranteed global convergence and exhibits a quadratic convergence rate
close to the true root vector.

2.1.4 Non-Iterative Optimal Min-Max Instrumental Variable Method for Sys- j
tem Identification [5]

One of the common problems in system identification is that the noise characteristics may
not be known or may vary from application to application. In [5] we have developed a new
system identification algorithm that is robust against unknown noise properties. The method
is an optimal min-max instrumental variable (IV) method that gives the smallest estimation
p'rk)r variance in the worst noise case from a prespecified class-, oises. Implementation
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of the new method does not require knowledge of system or noise parameters and therefore
can be done without iteration. It is useful for example for deadbeat controllers where there
is no need for the noise parameters to be estimated. This method was applied successfully
to both artificial and real data from gas furnace measurements.

2.2 Performance Analysis

Performance analysis includes derivation of the error covariance matrices of estimation al-
gorithms and derivation of generic bounds on estimation accuracy. A common bound is the
Cram6r-Rao bound (CRB) which is a lower bound on the estimation error covariance matrix
of any unbiased estimator. The CRB is useful for evaluating the quality of algorithms and
for gaining insight into the problem of interest.

2.2.1 Statistical Analysis of Two Non-Linear Least-Squares Estimators of Sine
Wave Parameters in the Colored Noise Case [6]

The main difficulty in deriving the covariance matrix of estimation algorithms stems from
their estimation nonlinearities. In [61 we have provided a statistical analysis of two nonlinear
least-squares estimators (NLSEs) of sine wave parameters in the colored noise case. These
estimators are the basic NLSE, which ignores the possible correlation of the noise, and the
optimal NLSE, which estimates the noise correlation (appropriately parametrized) as well
as the sine-wave parameters. It is shown that these two NLS estimators have the same
accuracy in large samples. This result provides complete justification for preferring the
computationally less expensive basic NLSE over the optimal NLSE. Both estimators are
shown to achieve the Cramr-Rao bound as the sample size increases. A simple explicit
expression for the asymptotic CRB matrix is provided, which should be useful in studying
the performance of sine-wave parameter estimators designed to work in the colored noise
case.

2.2.2 Performance Analysis of the Pisarenko Harmonic Decomposition Method
[7]

One of the well known methods fo. wave frequency estimation is the Pisarenko method
(see corresponding reference in [7]). The method consists of determining the minimum
eigenvalue of the data covariance matrix and its associated eigenfilter zeros. It has been very
popular due to its computational simplicity. In [7] we provide a self-contained statistical
analysis of this method. An explicit formula is provided for the asymptotic covariance
matrix of the method. This covariance is then compared with the Cram~r-Rao bound and
the Yule-Walker method (see [7]). Our results show that both the Pisarenko and the Yule-
Walker inethods are quite inefficient in the statistical sense. Their error variances are much
larger than the CRB. It is also shown tha, the vaiiances of these two methods increase
faster than the CRB when the signal-to-noise ratio decreases. Since both the Pisarenko and
the Yule-Walker methods are quite inefficient statistically. they are 1*tractive only when
computational simplicity is a must.
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2.2.3 On the Stability of Least-Squares Models Fitted to Multivariable Input-
Output Data [8]

The stability of least-squares models is irr.,portant in many aspects of parameter estimation
and has been the subject of intensive study leading to classical results for time series and
other special cases. However, in the case of multivariable dynamic systems with a control
(or exogenous) input, no such results exist except for certain very special cases.

We have studied general multivariable systems and models of arbitrary (finite) order in
[8]. The work has resulted in a theorem concerning the stability of such systems subject
to a set of easily satisfied assumptions which are generally assured to hold in practice. We
have also developed some easily-computed upper bounds on the moduli of the poles of the
systems.

3 Sensor Array Processing

Sensor array processing is a common name for several problems associated with arrays of
sensors. The sensors may be electromagnetic antennas, microphones, geophones, underwater
sonars, etc. These sensors are arranged in an arbitrary geometry to form a sensor array. The
sensor array records signal waveforms of distant emitters. These in turn are used to estimate
unknown emitter parameters, such as directions of arrivals, location, signal waveforms, etc.
The great interest in sensor array processing stems from their wide applicability in radar,
sonar, radio and microwave communication, seismology and hydroacoustics. An interesting
note is that damped/undamped sine wave parameter estimation in noise turns out to be a
special case of the sensor array processing problem.

The sensor output data is modeled as a superposition of individual wave forms. In
the narrow-band case (i.e. when the power of all the emitter signals is in the same narrow
frequency band) the sensor data model is:

y(t) = A(O)x(t) + e(t) t = 1,2,...,N (1)

where {y(t)} are the observed sensor data vectors, {x(t)} are the unknown signal wave form
vectors, and e(t) is an additive noise. The matrix A(O) models the characteristics of the
array (e.g. geometry and sensor directivity). Based on the sensor observations {y(t)}, the
parameters of interest (0 and {x(t)}) are estimated.

Two classes of methods for estimating the unknown parameters of (1) have received
significant attention in recent years. The first is the multiple signal characterization (MUSIC)
method which is based on the eigendecomposition of the data sample covariance matrix and
is in fact an ad-hoc method. The second is the maximum likelihood (ML) which is based on
statistical foundations.

In the following we summarize our research results in the area of sensor array processing
on these algorithms and the corresponding CRB.
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3.1 Algorithm Development

3.1.1 Maximum Likelihood Estimation of Exponential Signals in Noise Using a
Newton Algorithm [9]

The problem of estimating the direction of arrivals of far-field source wave forms impinging
on uniform linear arrays and the related one of estimating the parameters of multiple expo-
nential signals in noise is important in many applications of signal processing. As yet, no
optimal estimation methods tailored to this problem with guaranteed convergence have been
found since the estimation involves the difficult problem of maximizing the highly nonlinear
likelihood function. Our research in [9] presents an ML solution to the problem. Using the
properties of shift matrices we derive simple, exact, closed-form expressions for the gradient
vector and the Hessian matrix. Based on these results, a Newton algorithm is presented
for the estimation of source DOAs and multiple exponential signals in noise. The main
advantages of this algorithm include ease of implementation with matrix software packages
(such as MATLAB), as well as fast and guaranteed convergence to a local maximum of the
likelihood function. A globally convergent ML algorithm is currently being developed.

3.1.2 Conditional and Unconditional Maximum Likelihood Estimation of the
Parameters of Exponential Signals in Noise [10]

The Conditional Maximum Likelihood (CML) and Unconditional Maximum Likelihood (UML)
cost functions (described more fully in Section 3.2.2) are highly nonlinear and multimodal
with many false local minima. Thus estimation of source location parameters by minimiza-
tion of these cost functions is a difficult problem. In the past, algorithms for UML and
CML source localization were based on intuition rather than rigorously correct optimization
techniques. These intuitive methods lack the very important property of guaranteed conver-
gence. In our work in [10], we propose new algorithms with guaranteed local convergence
for minimization of the CML and UML cost functions.

This work deals specifically with uniform linear arrays (ULAs). The structure of the uni-
form linear array allows the unconditional and conditional negative log likelihood functions
to be reparametrized in terms of a polynomial model, and the coefficients of this polynomial
become the parameters to be estimated. Projection onto the orthogonal complement of the
space spanned by the columns of the steering matrix is required in the likelihood functions.
With reparametrization, this projection is replaced by a projection onto the space spanned
by the columns of a Toeplitz matrix with the desired polynomial coefficients along its diag-
onals. This fact is exploited to derive gradient-based source localization algorithms which
are computationally efficient.

3.2 Performance Analysis

3.2.1 MUSIC, Maximum Likelihood and Cram~r-Rao Bound [11]

Since the MUSIC is computationally simpler than the ML method, and since these methods
a-- widely used, it has been of great interest and importance to evaluate the performance of
these two methods, comparing them with one another and with the CRB.
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Our paper [11] provides extensive studies of the performance of the MUSIC and ML
methods, and analyzes their statistical efficiency. C!osed-form expressions are derived for
the MUSIC covariance matrix and the CRB for the estimation problem (1). It is shown that
unless the emitter signals are uncorrelated (i.e. absence of multipaths) and the number of
sensors is large, the MUSIC estimator cannot achieve the CRB. The relationship between the
MUSIC and the ML is also investigated. It is shown that the MUSIC is a large sample (i.e.
large N) realization of the ML estimate if and only if the emitter signals are uncorrelated.
The paper also contains results on the resolvability of the MUSIC and ML algorithms for
the problem of finding the DOAs of plane waves using a uniform linear array.

One of the well known results in estimation theory is that the ML method achieves the
CRB asymptotically. Our results prove that, for the problem (1), the ML method cannot
achieve the CRB unless the number of sensors is very large, even if the number of data
(N) is large. This "shocking" result is explained in [11]. It raises the question: Do better
estimators than the ML method exist for a finite number of sensors? This question has also
been investigated.

3.2.2 MODE, Maximum Likelihood and Cramr-Rao Bound [12]

Parameter estimation based on maximum likelihood methods requires knowledge of (or as-
sumptions concerning) the statistical distribution of the data to be analyzed. In sensor array
processing, the data consists of superimposed signals corrupted by noise, and two statistical
models of the signal generation mechanism are currently used. These are: 1) The conditional
model (CM) in which the signals are assumed to be nonrandom, and 2) the unconditional
model (UM) in which the signals are assumed to be random. Use of these two models
leads to two different estimation algorithms (termed CML and UML respectively) and two
different Cramr-Rao bounds (B, and B) on estimation accuracy. However, an algorithm
derived under either one of the two model assumptions may be applied to data generated by
the other model. A third estimation method, based on the asymptotic statistical properties
of the sample covariance matrix eigendecomposition, is the method of direction estimation
(MODE) and it too may be applied to data generated under the CM or UM.

One of the important issues investigated in our work reported in [12] has been the study
of the statistical properties of estimates obtained from algorithms based on possibly incorrect
signal generation models. In [12] we presented a rigorous derivation of the covariance matri-
ces CCML, CUML and CMODE of the CML, UML and MODE estimates, as well as bounds B,
and B, on the accuracy attainable under both signal models CM and UM. It was shown that
CML, UML, MODE and many other DOA estimation methods yield estimates whose statis-
tical properties are independent of the way in which the data is generated (i.e. nonrandom
or random).

Study of the covariance matrices has shown B,, is a lower bound on any consistent DOA
estimates based on the sample covariance matrix. It was also shown that MODE is asymp-
totically equivalent to UML, and that both of these methods achieve B,, asymptotically.
The study also showed that CML is less efficient statistically than UML, and that B, is
unattainable.

Both B, and B,, decrease monotonically as the number of sensors or snapshots increases,
and they increase as the number of sources increases. Also, as the number of sources or the
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signal-to-noise ratio increases, all matrices CCML, CUML, CN0DE, B, and B,, tend to the same
limit matrix.

The results of this part indicate that the best methods to be used in highly correlated
source scenarios (due to multipath effects) are MODE and UML. In these scenarios, the
popular methods MUSIC and CML suffer severe loss in accuracy.

3.2.3 Consistency of DOA Estimation with Multipath and Few Snapshots [13]

A fundamentally important property required of estimation algorithms is consistency; i.e.
that the estimate obtained should be equal to the true parameter vector for a large amount of
data or under favorable conditions such as high signal-to-noise ratio. This topic of algorithmic
consistency has not previously been studied in the context of DOA estimation.

In our work published in [13], we have derived conditions under which the CML and
MODE algorithms lead to unique solutions. The results have shown that the conditions
under which these two algorithms achieve unique, consistent estimates coincide with the
conditions under which the problem itself has a unique solution. This, in turn, reduces to
fundamental conditions on the array (specifically the number of sensors in relation to the
number of sources). The work has also revealed that, of the two possible implementations
of MODE, only one is guaranteed to give consistency.

3.2.4 Ph.D Thesis [14]

The author's student, David Starer, has recently completed his Ph.D thesis [14] with the
financial support of the AFOSR. The thesis contains the details pertaining to several portions
of this report. Its research led to the publications [3]-[4]), [9]-[101), as well as a newly
discovered algorithm which promises to yield some powerful results in the future. The new
algorithm is based on homotopic theory, and provides a passive method of estimating both
bearings and ranges of multiple sources. This is the first high-resolution method to be able
to estimate these parameters with minimal computational complexity and guaranteed global
convergence. Preliminary results are extremely encouraging, but a significant amount of
study still needs to be devoted to this new subject.

4 Future Outlook

Our research on algorithm development and analysis supported by this grant is rapidly
growing. Under this grant we have solved in [2]-[141 many important and difficult problems
which existed in the signal processing and system identification areas. Most of these problems
were not raised in the original proposal. However, there are many problems that we still

have to address.
In the future we will continue the development and analysis of algorithms for signal

processing and system identification. We will derive the ML covariance matrix for (1) and
analyze methods other than MUSIC and the MLE, such as weighted MUSIC, ESPRIT and
subspace rotation methods (SRMs). We will consider sensor array models that are more
general than (1). For instance, models of near-field sources, correlated sensor noises, signals
modeled through their covariances rather than their amplitudes, and finite data models. We
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will develop new algorithms and analyze their performance for these problems. A globally
convergent algorithm for (1) will be developed. Optimal methods that could outperform the
ML method will be developed for a finite number of sensors and data samples. Bounds that
are more appropriate than the CRB will be considered for the problems of closely spaced
emitters and damped (transient) signaL .

The support of the Air Force Office of Scientific Research has been essential for the
research in [2]-[141 and is gratefully acknowledged.
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